訂閱
糾錯
加入自媒體

“AI大模型+電子簽”,下一站在哪?

 

 大模型所帶來的數(shù)據(jù)分析、訓(xùn)練能力,將使得一些廠商的數(shù)據(jù)優(yōu)勢被逐漸放大,打造自身的差異化,打破電子簽賽道同質(zhì)競爭的局面。 

作者|斗斗 

編輯|皮爺 

出品|產(chǎn)業(yè)家  

AI大模型爆發(fā)以來,參與者眾多。在電子簽領(lǐng)域,這個技術(shù)同樣也更在創(chuàng)造新的想象力。不過,和所有大模型在各個場景遇到的“落地難”問題一樣,AI大模型在電子簽領(lǐng)域落地同樣不是一件容易的事。

甚至電子簽賽道更為典型。從流程來看,電子簽約流程中的簽署模版制作、印章簽名制作、發(fā)起簽署、用印簽署等環(huán)節(jié)較為純粹,很難催生大模型落地的溫床,其次高質(zhì)量的數(shù)據(jù)是垂直模型決策能力的關(guān)鍵,而數(shù)據(jù)收集、訓(xùn)練、學(xué)習(xí)都需要人工的參與和時間的積累,這些不僅是技術(shù)難題,在電子簽賽道更是邊界、合規(guī)的問題。

即使如今一些電子簽SaaS早已不斷往簽約的前后場景延伸,但這些場景所在的方向,也更是電子簽的上下游伙伴攻堅克難的戰(zhàn)場,大模型的“落地難”屬性已成為共識。

在大模型的推動下,電子簽的未來方向可能會朝向哪?

一、AI大模型,尋找電子簽“鑰匙”

“大模型落地于電子簽,需要往簽約前后場景走。”法大大產(chǎn)品中心總經(jīng)理劉謙對產(chǎn)業(yè)家直言。

事實上,已經(jīng)定稿的文件制作成模板,發(fā)起簽署,繼而完成簽署以后進(jìn)行存證,在這個過程中,其內(nèi)容是不能發(fā)生改變的,其產(chǎn)品能力只是記錄文件是否被篡改,以及身份、意愿的真實性等。難以與大模型的生成能力結(jié)合,發(fā)揮大模型真正的價值。

對于AI大模型而言,其價值點在于收集數(shù)據(jù),進(jìn)行訓(xùn)練學(xué)習(xí),給出智能決策,幫助企業(yè)更好的降本增效、規(guī)避風(fēng)險等。

在電子簽領(lǐng)域,如何結(jié)合行業(yè)內(nèi)容,根據(jù)需求生成、分析內(nèi)容,固然是AI大模型能發(fā)揮價值的場景。但對于純粹的電子簽約,相較于對內(nèi)容的生成、分析,可信才是第一要義。

或者換言之,對于AI大模型而言,只是單純的電子簽約產(chǎn)品,與AI大模型結(jié)合,并不能為客戶帶來較大的增量。

在劉謙的表述中,更能延伸出的一個思考是,在AI大模型于電子簽領(lǐng)域落地難的現(xiàn)狀背后,其更隱藏的是電子簽SaaS需要在簽約場景之外尋找到真正的大模型落地場景。

實際上,這種“探尋”在過去幾年已經(jīng)發(fā)生。近幾年,隨著電子簽SaaS的發(fā)展,人們對線上簽約的需求逐漸從單純的簽約場景,向前、向后延伸。即不同于國外專注于打造細(xì)分領(lǐng)域SaaS的模式,國內(nèi)客戶更加青睞一個軟件解決所有問題的模式。

能看到的是,在電子簽SaaS領(lǐng)域的頭部廠商,如e簽寶、法大大、契約鎖、上上簽等,在過去幾年,都在不斷延展自身的產(chǎn)品服務(wù)邊界。例如,e簽寶的智能合同產(chǎn)品,基于AI技術(shù),為企業(yè)提供合同起草-審批-簽訂-執(zhí)行-歸檔-統(tǒng)計的智能化全生命周期服務(wù);法大大的iTerms智能合同審查,為企業(yè)提供合同審查、協(xié)作審查、文本比對、智能歸檔等能力……

“大模型的落地會讓大家都能把智能合同用起來。”e簽寶CEO金宏洲說道。

過去的AI1.0時代,人工智能以監(jiān)督學(xué)習(xí)訓(xùn)練為主,即根據(jù)已知的輸入和輸出數(shù)據(jù)樣本,學(xué)習(xí)出一個模型,對未知數(shù)據(jù)進(jìn)行預(yù)測或分類,以求達(dá)到一個預(yù)期的目標(biāo)。而由于大型企業(yè)的合同內(nèi)容、管理都較為規(guī)范,所以監(jiān)督訓(xùn)練的效果更為準(zhǔn)確。而中小型企業(yè)則反之,限制了其智能合同的深度應(yīng)用。

而大模型或?qū)⒏淖冞@一業(yè)態(tài)。

可以預(yù)想的是,在這些場景中,AI大模型可以給予強(qiáng)大的決策能力加持。那么,對電子簽廠商而言,應(yīng)該怎么做?

二、高質(zhì)量的「高質(zhì)量數(shù)據(jù)」

從當(dāng)下來看,想要大模型落地于電子簽領(lǐng)域,無外乎兩種路徑:一是廠商自建AI大模型,二是與通用大模型合作。

前者需要大量的資金、數(shù)據(jù)以及AI技術(shù)支撐,對于電子簽廠商而言,后者是相對合理的落地方式。

但單純基于通用大模型,對電子簽賽道而言其局限性要比其它方向更大。“基于通用大模型的能力來做細(xì)分領(lǐng)域應(yīng)用,效果肯定是一般的。”劉謙表示,在他看來,通用的大模型能力不足以完成電子簽約以及智能合同的相關(guān)服務(wù),必須要跟本地知識庫進(jìn)行結(jié)合。

換言之,和其他方向相似,廠商要做的是需要將大量的合同數(shù)據(jù)集成到通用大模型中,打造電子簽領(lǐng)域的專有模型。

但這件事并不是所有廠商都有能力去做的。

首先,客戶的合同數(shù)據(jù)被收集到通用大模型中,會導(dǎo)致客戶合同數(shù)據(jù)泄漏。

眾所周知,在電子簽領(lǐng)域,數(shù)據(jù)十分敏感。大多數(shù)的電子合同服務(wù)商提供的都是公有云SaaS模式的電子合同產(chǎn)品,數(shù)據(jù)存于云端的數(shù)據(jù)中心,用戶的電子合同簽署、數(shù)據(jù)均存儲于公有服務(wù)器上。

雖然平臺提供豐富的認(rèn)證方式和驗證手段以確保數(shù)據(jù)的安全,防止合同數(shù)據(jù)被篡改,但對于信息安全度和合同數(shù)據(jù)敏感性的用戶來說,數(shù)據(jù)安全隱患還是他們最為擔(dān)心的問題。

所以,電子簽專有模型,需要建立在私有云上,保障合同數(shù)據(jù)的安全。

這對通用大模型的選型也十分重要。劉謙對產(chǎn)業(yè)家表示,法大大目前就與多家通用大模型廠商合作,將各個通用大模型的長處與產(chǎn)品應(yīng)用場景結(jié)合,以此讓集成的合同數(shù)據(jù)在保證安全性的前提下,發(fā)揮最大的價值。

除此之外,為了使得電子簽專有模型作出的智能決策更加準(zhǔn)確,廠商需要依靠人工標(biāo)注出高質(zhì)量的數(shù)據(jù),進(jìn)行訓(xùn)練、學(xué)習(xí)。而電子簽的數(shù)據(jù)標(biāo)注,不僅需要其具備技術(shù)能力,還需要其掌握法律知識、合同規(guī)范等行業(yè)經(jīng)驗。

更為重要的是,電子簽廠商是否具備高質(zhì)量的合同數(shù)據(jù)是個“偽命題”。即比起傳統(tǒng)電子簽廠商,大部分電子簽SaaS起步較晚,導(dǎo)致其在高質(zhì)量數(shù)據(jù)集成方面較弱。

從這點來看,對電子簽而言,AI大模型落地的難點在場景之外,也更在數(shù)據(jù)。甚至相較于其他賽道,數(shù)據(jù)的門檻要更高。

三、再看「AI大模型+電子簽」

但不可否認(rèn),在「AI大模型+電子簽」的模式下,一些本質(zhì)的變化也或?qū)l(fā)生。

具體來看,在合同簽署的全生命周期中,除了合同簽署環(huán)節(jié)的安全、合規(guī)等問題,合同起草、合同審查環(huán)節(jié)是企業(yè)最為重視的環(huán)節(jié)。隨著客戶簽約需求逐漸向前、后場景拓展,這些需求也為廠商帶來了新的挑戰(zhàn)。

過去,大部分電子簽廠商在AI的加持下,通過智能合同產(chǎn)品,一定程度上實現(xiàn)了合同文本的智能起草、糾錯等問題。

然而,在合同起草、糾錯的質(zhì)量上,與理想狀態(tài)仍有差距。這種差距一定程度上受限于數(shù)據(jù)質(zhì)量和數(shù)據(jù)量以及算力。

在「AI大模型+電子簽」模式下,基于底層通用大模型的能力,再疊加充足算力和數(shù)據(jù)量,加上電子簽廠商的高質(zhì)量合同數(shù)據(jù),便可以在合同起草、審查等環(huán)節(jié)給出更準(zhǔn)確的智能決策,幫助企業(yè)縮短合同簽署周期、降低合同文本的錯誤率,使得智能合同“名副其實”。

其次,「AI大模型+電子簽」模式下,帶來的還有交付模式上的變化。由于國內(nèi)大型企業(yè)定制化要求高,例如同一個行業(yè),不同業(yè)務(wù),之間簽署需求就有著巨大的差異。導(dǎo)致國內(nèi)電子簽SaaS交付模式普遍較重,服務(wù)商側(cè)人力、財力、精力投入較多。

通過大模型的賦能,將合同簽署的全周期管理中某些環(huán)節(jié)進(jìn)行智能化,可以很大程度上可以減輕這方面的壓力,加速產(chǎn)品奔向行業(yè)標(biāo)準(zhǔn)化。例如對于大部分中小企業(yè)而言,「大模型+電子簽」的模式下,可以使得其實現(xiàn)自助式服務(wù)。

“我們接入了不同的大模型,融入到我們的服務(wù)里面。”在e簽寶的解決方案中,大模型的能力已經(jīng)成為其ePaaS的底層能力。

站在更大的角度來看,國內(nèi)的SaaS賽道,由于市場的差異化,導(dǎo)致SaaS廠商的競爭格局常常面臨內(nèi)卷、同質(zhì)化競爭,電子簽賽道亦是如此。而在大模型的加持下,以往在某些垂直領(lǐng)域經(jīng)驗多、數(shù)據(jù)積累多的電子簽廠商,在服務(wù)力上將獲得較大的提升。

換言之,大模型所帶來的數(shù)據(jù)分析、訓(xùn)練能力,將使得一些廠商的數(shù)據(jù)優(yōu)勢被逐漸放大,打造自身的差異化,打破電子簽賽道同質(zhì)競爭的局面。

誰積累更深,誰或許就更能先行一步。

更為主要的是,大模型或?qū)⒊蔀橐环N底層能力,在大模型之上,電子簽廠商可以調(diào)用其數(shù)據(jù)、算力等能力,助力其打造一體化、全棧式的服務(wù),使得電子簽產(chǎn)品邁向標(biāo)準(zhǔn)化、規(guī);

       原文標(biāo)題 : “AI大模型+電子簽”,下一站在哪?

聲明: 本文由入駐維科號的作者撰寫,觀點僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯
x
*文字標(biāo)題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號