Uber提高地圖精度絕招:CatchME系統(tǒng)
高精度的地圖需要強(qiáng)大的地圖堆棧,提供路由、導(dǎo)航指令和ETA計(jì)算等服務(wù)。以往, Uber工程師使用各種反饋來(lái)識(shí)別地圖錯(cuò)誤,例如,記錄和理解用戶(hù)反饋的機(jī)器學(xué)習(xí)模型,或通過(guò)評(píng)估地圖指標(biāo)來(lái)提高地圖精度。這次,Uber發(fā)布博客稱(chēng),Uber工程師構(gòu)建了CatchME系統(tǒng)。
CatchMapError(CatchME)是一個(gè)系統(tǒng),可以通過(guò)驅(qū)動(dòng)程序應(yīng)用程序中的匿名GPS跟蹤自動(dòng)捕獲地圖數(shù)據(jù)中的錯(cuò)誤。CatchME使用來(lái)自大型地理區(qū)域的數(shù)千萬(wàn)次駕駛的匿名和聚合數(shù)據(jù)來(lái)捕獲地圖數(shù)據(jù)錯(cuò)誤。通過(guò)CatchME,運(yùn)營(yíng)商可以快速識(shí)別并修復(fù)這些錯(cuò)誤,從而在Uber平臺(tái)上實(shí)現(xiàn)更準(zhǔn)確的路線(xiàn)和改進(jìn)的駕駛員合作體驗(yàn)。
圖1:左側(cè)地圖上缺少的路段導(dǎo)致7.6分鐘的ETA;右側(cè)的精確地圖顯著降低了ETA,為騎手和駕駛者提供了更好的體驗(yàn)。
使用GPS識(shí)別地圖錯(cuò)誤
CatchME的基本理念是Uber使用GPS追蹤反映地面實(shí)況。通過(guò)分析道路地圖匹配的異常,CatchME識(shí)別地圖與地面實(shí)況之間的差異。這些差異通常是由地圖數(shù)據(jù)錯(cuò)誤引起的,可以通過(guò)更新地圖來(lái)解決。
CatchME的第一個(gè)挑戰(zhàn)是找出駕駛員的導(dǎo)航行為(由GPS軌跡記錄)是否與建議的地圖路線(xiàn)顯示不一致。CatchME,使用隱馬爾可夫模型(HMM)在地圖數(shù)據(jù)上捕捉GPS軌跡,從而報(bào)告預(yù)期路線(xiàn)和實(shí)際路線(xiàn)之間的差異。
在城市環(huán)境中,GPS軌跡并不完全準(zhǔn)確,因此無(wú)法得知平臺(tái)上車(chē)輛的確切位置。Uber工程師將車(chē)輛位置概率放入HMM中,維特比算法根據(jù)這些軌跡計(jì)算出車(chē)輛駛過(guò)的最可能的路段序列。有了這些信息,CatchME會(huì)報(bào)告此序列中的跟蹤異常,并突出顯示驅(qū)動(dòng)程序行為與應(yīng)用程序建議路徑之間的差異。
下面的圖2描繪了GPS軌跡如何突出地圖數(shù)據(jù)中的不準(zhǔn)確性的示例。在這種情況下,舊金山金門(mén)公園的一條路線(xiàn)(a)顯示一名司機(jī)在第8大道和富爾頓街的交叉路口右轉(zhuǎn),但司機(jī)偏離了(b)建議路線(xiàn):
圖2(a)
圖2(b)
在圖2中,可以看見(jiàn)存在右轉(zhuǎn)限制,阻止平臺(tái)上的駕駛員向右轉(zhuǎn)。但是,根據(jù)駕駛員的行為,可以判斷這條信息可能不準(zhǔn)確。CatchME發(fā)現(xiàn)了平臺(tái)建議的導(dǎo)航和實(shí)際駕駛員行為之間的差異,使系統(tǒng)能夠識(shí)別并修復(fù)錯(cuò)誤。
建議路線(xiàn)與GPS軌跡之間的差異不一定是由于地圖數(shù)據(jù)錯(cuò)誤造成的。下面的圖3突出顯示了造成這些差異的另外兩個(gè)可能原因:(a)非法或危險(xiǎn)的駕駛員行為;(b)噪聲GPS軌跡,即沒(méi)有提供足夠的具體數(shù)據(jù)來(lái)清楚地確定所采用的路線(xiàn)。
圖3(a):一名駕駛員左轉(zhuǎn)非法,在此圖像中以紅點(diǎn)突出顯示。駕駛員行為導(dǎo)致實(shí)際行程路線(xiàn)與建議路線(xiàn)之間的差異。
圖3(b):噪聲GPS信號(hào)導(dǎo)致實(shí)際行程路線(xiàn)與建議路線(xiàn)之間的差異。
CatchME錯(cuò)誤檢測(cè)算法
如前所述,HMM是將GPS點(diǎn)與地圖數(shù)據(jù)連接起來(lái)的橋梁。從概念上講,維特比算法通過(guò)HMM中的所有可能狀態(tài)計(jì)算包括最可能狀態(tài)序列的路徑。理想情況下,此序列中的狀態(tài)轉(zhuǎn)換在所有可能狀態(tài)中應(yīng)具有高概率。但是,如果存在地圖數(shù)據(jù)錯(cuò)誤,則此序列仍將包括具有低概率的狀態(tài)轉(zhuǎn)換。在這種情況下,我們將序列中的狀態(tài)之間的低概率稱(chēng)為異常概率。
排放概率(EP)和轉(zhuǎn)移概率(TP)將首先放入HMM中。EP表示車(chē)輛在某些時(shí)刻出現(xiàn)在某些路段上的可能性。TP表示車(chē)輛在一定持續(xù)時(shí)間內(nèi)從一個(gè)路段移動(dòng)到另一個(gè)路段的可能性。因此,對(duì)于附近具有m個(gè)路段的一個(gè)GPS點(diǎn),將存在m個(gè)EP,其表示每個(gè)路段上的該GPS軌跡的可能性。對(duì)于GPS點(diǎn)G1,其中有米附近的部分,和G2,其中有?鄰近段,有m*n個(gè)TP。這些概率在HMM中,維特比算法從中獲取具有最大概率的狀態(tài)序列,該概率最可能代表車(chē)輛正在移動(dòng)的路段。
圖4
上面的圖4顯示出了用于計(jì)算某個(gè)路段上的GPS點(diǎn)的EP所考慮的因素。公式概述如下:
GPS點(diǎn)與路段上的捕捉點(diǎn)之間的半徑距離在哪里。EP表示如果車(chē)輛實(shí)際上在路段上,GPS將被觀察的可能性。(在MicrosoftResearch論文中了解有關(guān)發(fā)射概率的更多信息,通過(guò)噪聲和稀疏性匹配隱藏馬爾可夫地圖)。
圖5:通過(guò)在其捕捉點(diǎn)S1到S2之間創(chuàng)建路線(xiàn)并測(cè)量該路線(xiàn)的距離來(lái)計(jì)算從G1到G2的轉(zhuǎn)換概率。
圖5顯示出了用于計(jì)算關(guān)于一個(gè)點(diǎn)的GPS轉(zhuǎn)移概率考慮到的因素上的特定段到另一GPS點(diǎn)上的特定段,使用下面的公式計(jì)算:
是兩個(gè)GPS點(diǎn)的半徑距離與兩個(gè)與GPS點(diǎn)相關(guān)聯(lián)的捕捉點(diǎn)之間的可路由距離之間的差值的絕對(duì)值。當(dāng)發(fā)射GPS位置時(shí)車(chē)輛穿過(guò)這兩個(gè)部分的可能性小于其他部分。
在該計(jì)算中,EP和TP形成矩陣。維特比以最大概率獲取全球最佳路段序列,這些概率最有可能是車(chē)輛正在行駛的路線(xiàn)。下面的圖6示出了G1,G2和G3是GPS點(diǎn)的示例,S1到S7是段,綠色圓圈是發(fā)射概率,黑色箭頭是轉(zhuǎn)換概率。運(yùn)行維特比算法后,得到路段序列S4,S3和S1,以及G1,G2和G3的表示繼續(xù)這些序列。
圖6:在該示例中,維特比算法通過(guò)使用HMM來(lái)計(jì)算道路過(guò)渡S4,S3和S1的最可能的分段序列。這三個(gè)段代表GPSG1,G2和G3。
圖7:路段A和B之間存在缺失段。但是,由綠色和藍(lán)色點(diǎn)標(biāo)記的GPS點(diǎn)顯示駕駛員穿過(guò)A到B。從GPS點(diǎn)G1到GPS點(diǎn)G2的轉(zhuǎn)換概率異常低,表明G1和G2周?chē)赡艽嬖诘貓D錯(cuò)誤。
通常,維特比算法從HMM中拾取的路段序列表示車(chē)輛經(jīng)過(guò)的路段。但是,如果地圖數(shù)據(jù)有錯(cuò)誤,例如圖7中描繪的段,則該序列將包括異常低的轉(zhuǎn)移概率,表明車(chē)輛無(wú)法在段上行進(jìn)或在地圖數(shù)據(jù)上下文中的某些段之間轉(zhuǎn)換。
CatchME通過(guò)使用綠色和藍(lán)色顏色可視化可疑的GPS點(diǎn)來(lái)識(shí)別GPS軌跡之間的差異,這些顏色指示給定路線(xiàn)上的異常過(guò)渡(圖7)。在這些情況下,操作員可以快速找到該區(qū)域并修復(fù)這些錯(cuò)誤(圖2)。
縮放準(zhǔn)確性
由于建議路線(xiàn)和現(xiàn)實(shí)路線(xiàn)之間的差異不一定表示地圖數(shù)據(jù)中的錯(cuò)誤,因此捕捉給定路線(xiàn)上的錯(cuò)誤不能僅依賴(lài)于一次駕駛的結(jié)果。相反,CatchME使用來(lái)自大地理區(qū)域的數(shù)千萬(wàn)次駕駛的匿名和聚合數(shù)據(jù)來(lái)捕獲地圖數(shù)據(jù)錯(cuò)誤。
CatchME采用分而治之(D&C)方法在不同行程中橫向擴(kuò)展。D&C的主要目標(biāo)是對(duì)GPS軌跡和地圖數(shù)據(jù)進(jìn)行分片,以便可以并行處理它們。分片基于跟蹤和地圖數(shù)據(jù)的S2單元?缭蕉鄠(gè)S2細(xì)胞的跡線(xiàn)被分成多個(gè)子跡線(xiàn),每個(gè)子跡線(xiàn)由單個(gè)S2細(xì)胞完全包含。檢測(cè)在不同的S2細(xì)胞中平行獨(dú)立運(yùn)行。下面的圖8說(shuō)明了這種高級(jí)分片。為了保證每個(gè)S2單元包括可用于檢測(cè)錯(cuò)誤的所有地圖數(shù)據(jù),我們通常擴(kuò)展S2單元邊界,以便所有地圖數(shù)據(jù)及其相關(guān)的GPS點(diǎn)都在范圍內(nèi)。
圖8:使用S2單元對(duì)GPS軌跡和地圖數(shù)據(jù)進(jìn)行分片使我們能夠大規(guī)模地收集有關(guān)地圖數(shù)據(jù)錯(cuò)誤的見(jiàn)解。
但是,使用靜態(tài)S2單元分區(qū)行程和映射數(shù)據(jù)有時(shí)無(wú)法提供足夠的并發(fā)性。例如,舊金山國(guó)際機(jī)場(chǎng)(SFO)等某些地區(qū)的S2小區(qū)的駕駛次數(shù)遠(yuǎn)遠(yuǎn)多于農(nóng)村地區(qū)相同水平的S2小區(qū)。
為了進(jìn)一步提高CatchME的性能,為每個(gè)高密度單元制作了多個(gè)副本。每個(gè)副本具有相同的地圖數(shù)據(jù),但是具有不同且均勻分布的行程集,如下面的圖9所示:
圖9:一個(gè)S2單元中的跡線(xiàn)被劃分為具有相同地圖數(shù)據(jù)的兩個(gè)S2單元。
這種方法消除了由高密度單元引起的瓶頸,并且導(dǎo)致更準(zhǔn)確的結(jié)果,因?yàn)槊總(gè)單元仍然足夠大,以包含用于地圖匹配和錯(cuò)誤檢測(cè)的完整地圖數(shù)據(jù)上下文和GPS點(diǎn)。
過(guò)濾誤報(bào)
作為縮放CatchME的結(jié)果,足夠的差異信號(hào)(異常概率)提供了用于評(píng)估數(shù)據(jù)錯(cuò)誤的統(tǒng)計(jì)視圖。聚合來(lái)自大量駕駛的結(jié)果背后的哲學(xué)是,如果看到在駕駛報(bào)告的給定地點(diǎn)的異常概率的一致性,這種差異的根本原因更可能是地圖數(shù)據(jù)錯(cuò)誤而不是非法駕駛行為或噪聲GPS信號(hào)。
由于CatchME已經(jīng)確定了位于具有16級(jí)大。⊿2小區(qū)統(tǒng)計(jì))的某些S2小區(qū)中的GPS點(diǎn)之間的異常概率方面的差異,平均大小為19,793平方米,因此CatchME將每個(gè)S2小區(qū)視為基本錯(cuò)誤單元。通過(guò)聚合這些單元,CatchME可以確定哪些錯(cuò)誤更有可能影響驅(qū)動(dòng)程序合作伙伴應(yīng)用程序的用戶(hù)體驗(yàn)。
如圖3(b)所示,差異不一定是錯(cuò)誤。CatchME連接GPS點(diǎn),其中視差信號(hào)(或異常轉(zhuǎn)移概率)作為多邊形鏈存在(通常該多邊形鏈包括大約40個(gè)GPS點(diǎn))。如果此鏈的幾何無(wú)效,CatchME將忽略此錯(cuò)誤信號(hào)。CatchME還觀察到一定數(shù)量的錯(cuò)誤警報(bào),這些錯(cuò)誤警報(bào)是由于下面的圖10所示的GPS軌跡偏移引起的,其中GPS軌跡穿過(guò)建筑物而不是靠近道路移動(dòng)。如果這些GPS點(diǎn)跨越多個(gè)物理建筑大于某個(gè)閾值,CatchME將忽略這種差異。
圖10:由黃點(diǎn)動(dòng)畫(huà)顯示的GPS跟蹤顯示GPS跟蹤移位。CatchME忽略了這種情況,即使它引發(fā)了視差信號(hào)。
更好的地圖,更好的用戶(hù)體驗(yàn)
CatchME的結(jié)果已經(jīng)證明了一種非常有前景的方法。在推出后的前三個(gè)月內(nèi),CatchME檢測(cè)到超過(guò)28,000個(gè)地圖錯(cuò)誤。在Uber的地圖上糾正這些錯(cuò)誤大大提高了駕駛ETA,導(dǎo)航和用戶(hù)體驗(yàn)的準(zhǔn)確性。
未來(lái),Uber計(jì)劃通過(guò)增強(qiáng)算法和利用衛(wèi)星圖像等其他證據(jù)來(lái)進(jìn)一步提高CatchME的精度。結(jié)合客戶(hù)報(bào)告的地圖錯(cuò)誤,CatchME發(fā)現(xiàn)的地圖錯(cuò)誤將為駕駛員提供更好的體驗(yàn)。
參考資料:
[1] https://eng.uber.com/mapping-accuracy-with-catchme/
[2] Newson P , Krumm J . [ACM Press the 17th ACMSIGSPATIAL International Conference - Seattle, Washington(2009.11.04-2009.11.06)] Proceedings of the 17th ACM SIGSPATIAL InternationalConference on Advances in Geographic Information Systems - GIS "09 -Hidden Markov map matching through noise and sparseness[J]. 2009:336.
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
最新活動(dòng)更多
-
11月19日立即報(bào)名>> 【線(xiàn)下論壇】華邦電子與恩智浦聯(lián)合技術(shù)論壇
-
12月19日立即報(bào)名>> 【線(xiàn)下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 蔡司新能源汽車(chē)三電質(zhì)量解決方案
-
精彩回顧立即查看>> 蔡司新能源汽車(chē)三電質(zhì)量解決方案
-
精彩回顧立即查看>> 2024(第五屆)全球數(shù)字經(jīng)濟(jì)產(chǎn)業(yè)大會(huì)暨展覽會(huì)
-
精彩回顧立即查看>> 【線(xiàn)下會(huì)議】全數(shù)會(huì)2024電子元器件展覽會(huì)
推薦專(zhuān)題
- 1 從小鵬、理想、蔚來(lái)布局看自動(dòng)駕駛發(fā)展趨勢(shì)
- 2 被逼墻角的Mobileye,祭出 CAIS 大旗,挑戰(zhàn)端到端大模型智能駕駛
- 3 SiC、Chiplet、RISC-V,汽車(chē)半導(dǎo)體發(fā)展的三大動(dòng)力
- 4 676億地平線(xiàn)港股上市,要與英偉達(dá)、華為搶市場(chǎng)
- 5 6 輸給新勢(shì)力,賽力斯失去“華為溢價(jià)”
- 7 如何跑贏汽車(chē)智能化下半場(chǎng)?
- 8 激光雷達(dá)即將降價(jià),純視覺(jué)回到鄙視鏈底層?
- 9 “端到端”風(fēng)口已至?
- 10 小馬智行招股書(shū)曝光:成立8年融資92億,近2年半虧掉23億
- 項(xiàng)目經(jīng)理(汽車(chē)內(nèi)飾&汽車(chē)電子) 伯恩光學(xué)(惠州)有限公司
- 產(chǎn)品工程師(汽車(chē)) 易思維(杭州)科技股份有限公司
- IE工程師(汽車(chē)智聯(lián)) 惠州碩貝德無(wú)線(xiàn)科技股份有限公司
- 結(jié)構(gòu)工程師-汽車(chē)電子事業(yè)部(J10116) 深圳奧尼電子股份有限公司
- 銷(xiāo)售總監(jiān)-汽車(chē)電子方向 深圳市智立方自動(dòng)化設(shè)備股份有限公司
- 銷(xiāo)售經(jīng)理(汽車(chē)新能源行業(yè)) 廣州瑞松智能科技股份有限公司
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷(xiāo)售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷(xiāo)售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專(zhuān)家 廣東省/江門(mén)市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市