利用數(shù)據(jù)算法 英偉達(dá)重建缺失像素
隨著科技技術(shù)的不斷發(fā)展,大數(shù)據(jù)在人工智能領(lǐng)域上擁有越來越多的作用,當(dāng)然大數(shù)據(jù)的分析與挖掘已經(jīng)成為各科研單位的研究熱點(diǎn)。尤其指向在一定時間范圍內(nèi)用常規(guī)軟件工具進(jìn)行捕捉、管理和處理的數(shù)據(jù)集合。
前段時間,英偉達(dá)公司發(fā)布了一種最先進(jìn)的深度學(xué)習(xí)算法,它可以有效編輯圖像或復(fù)原那些像素有缺失的圖像。然后通過刪除圖像的部分內(nèi)容再進(jìn)行填充的方式,并且利用大數(shù)據(jù)來重新編輯圖像。
據(jù)研究人員表示,這種“圖像修復(fù)”功能應(yīng)用在照片編輯軟件中,先摳掉圖像中不需要的內(nèi)容,同時用算法生成的真實(shí)數(shù)據(jù)來填充。其次,通過將生成的馬賽克圖案覆蓋在ImageNet,Places2 和CelebA-HQ數(shù)據(jù)集的圖像上,使用NVIDIA Tesla V100 GPU和經(jīng)過cuDNN加速的PyTorch深度學(xué)習(xí)框架來訓(xùn)練神經(jīng)網(wǎng)絡(luò)。
為了解決這個問題,研究團(tuán)隊開發(fā)了一種方法,確保受損像素的輸出不依賴于因這些像素產(chǎn)生的輸入值。使用一組損失函數(shù)來訓(xùn)練模型,匹配VGG模型的特征損失和風(fēng)格損失以產(chǎn)生逼真的輸出,在未來相同的網(wǎng)絡(luò)框架可以來完成高分辨率圖像的處理任務(wù)。
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
即日-11.13立即報名>>> 【在線會議】多物理場仿真助跑新能源汽車
-
11月28日立即報名>>> 2024工程師系列—工業(yè)電子技術(shù)在線會議
-
12月19日立即報名>> 【線下會議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會
-
即日-12.26火熱報名中>> OFweek2024中國智造CIO在線峰會
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
精彩回顧立即查看>> 【限時免費(fèi)下載】TE暖通空調(diào)系統(tǒng)高效可靠的組件解決方案
推薦專題
- 高級軟件工程師 廣東省/深圳市
- 自動化高級工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市