機器學(xué)習(xí)之于IOT淺見
在輸入和輸出層之間, 有一個或多個隱藏層(圖5)。 一層的輸出通過加權(quán)后連接到下一層的節(jié)點。網(wǎng)絡(luò)通過修改這些權(quán)重來學(xué)習(xí)輸入和輸出之間的映射。通過使用多個隱藏層, 深度學(xué)習(xí)算法從輸入數(shù)據(jù)中提取特征, 而不需要明確地將特征輸入到算法中。 這被稱為"特征學(xué)習(xí)"。
圖5 前饋人工神經(jīng)網(wǎng)絡(luò)
面向深度學(xué)習(xí)的系統(tǒng)設(shè)計
深度學(xué)習(xí)最近在軟件應(yīng)用領(lǐng)域取得了成功, 主要是因為技術(shù)部件的成熟, 比如硬件中的計算能力增強, 大量的訓(xùn)練數(shù)據(jù)被標(biāo)記, 學(xué)習(xí)算法和網(wǎng)絡(luò)初始化方面的突破, 以及開放源碼軟件框架的可用性。
下面是用深度學(xué)習(xí)系統(tǒng)的主要考慮因素。
拓?fù)?/strong>
深度學(xué)習(xí)是一個不斷發(fā)展的領(lǐng)域, 目前正在使用許多網(wǎng)絡(luò)拓?fù)洌?]。其中一些網(wǎng)絡(luò)顯示了對控制和監(jiān)控物聯(lián)網(wǎng)應(yīng)用的承諾:
深層神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)是一種完全連接的人工神經(jīng)網(wǎng)絡(luò), 具有許多隱藏層(因此深層)。 這些網(wǎng)絡(luò)是極好的函數(shù)逼近器, 例如, 可用于電力行業(yè)中電子控制的應(yīng)用。控制系統(tǒng)的仿真模型可用于使用深度網(wǎng)絡(luò)構(gòu)建控制器, 并生成訓(xùn)練數(shù)據(jù)。通過這種方法, 可以探索通常難以使用傳統(tǒng)方法控制的狀態(tài)(邊界/交叉條件)
卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, 簡稱 CNN)是利用輸入信號的二維結(jié)構(gòu), 如輸入圖像或語音信號。一個卷積網(wǎng)絡(luò)由一個或多個卷積層(過濾層)組成, 然后是一個完全連接的多層神經(jīng)網(wǎng)絡(luò)。 這些網(wǎng)絡(luò)在成像和目標(biāo)識別中的缺陷檢測等問題上取得了成功。它們也被用于駕駛員援助系統(tǒng)(ADAS)中的場景。
循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network, RNN)是基于利用順序(或歷史)信息進行預(yù)測的算法。這些網(wǎng)絡(luò)有利于時間序列分析。傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)假設(shè)所有的輸入(和輸出)在時間或到達的順序上相互獨立。記錄狀態(tài)信息, 存儲過去的信息, 并使用迄今為止計算出來的信息進行下一個預(yù)測。 在物聯(lián)網(wǎng)應(yīng)用中, RNN有利于學(xué)習(xí)歷史行為, 并用于預(yù)測未來的事件, 例如資產(chǎn)的剩余使用壽命。 長短期記憶(LSTM)網(wǎng)絡(luò)也適用于這類應(yīng)用[2]。
深度強化學(xué)習(xí)(DRL)對于在復(fù)雜動態(tài)環(huán)境中運行的自適應(yīng)控制系統(tǒng)是有好處的。 考慮控制在倉庫操作中部署的機器人, 這些機器人必須動態(tài)地適應(yīng)新的任務(wù)。 以強化學(xué)習(xí)為基礎(chǔ)的控制者學(xué)習(xí)一項任務(wù)時, 它們通過執(zhí)行一個動作, 使他們更接近目標(biāo)而獲得的獎勵。例如, 控制器接收來自攝像機的圖像, 該照片顯示了機器人手臂的當(dāng)前位置, 并利用圖像中的信息來學(xué)習(xí)如何將手臂移近目標(biāo)(圖6)[3]。 基于DLC的控制器可以通過機器人模擬器或者通過觀察實際的機器人來訓(xùn)練。
圖6 機器人控制應(yīng)用的深度強化學(xué)習(xí)
訓(xùn)練
DNN需要大量的訓(xùn)練數(shù)據(jù), 這些數(shù)據(jù)最好包括來自學(xué)習(xí)所需要的所有不同狀態(tài)或條件的數(shù)據(jù)。對于大多數(shù)應(yīng)用而言, 現(xiàn)有數(shù)據(jù)主要來自系統(tǒng)的正常工作狀態(tài), 其中包括從其他狀態(tài)獲取的少量數(shù)據(jù)。
數(shù)據(jù)增強/泛化是一種用來改善數(shù)據(jù)不平衡的技術(shù), 可以從現(xiàn)有的小樣本集開始, 通過數(shù)據(jù)轉(zhuǎn)換創(chuàng)建額外的合成版本,還可以使用該系統(tǒng)的模擬模型來創(chuàng)建訓(xùn)練數(shù)據(jù)。
另一個挑戰(zhàn)是難以收集訓(xùn)練這些網(wǎng)絡(luò)所需的大量數(shù)據(jù)。轉(zhuǎn)移學(xué)習(xí)是可以用來緩解這個問題的方法之一。 使用轉(zhuǎn)移學(xué)習(xí), 可以從預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)開始(大多數(shù)深度學(xué)習(xí)框架提供了可以下載的經(jīng)過完全訓(xùn)練的模型) , 并用應(yīng)用中的數(shù)據(jù)對其進行微調(diào)。
硬件
訓(xùn)練深度網(wǎng)絡(luò)有著巨大的處理要求。GPU已經(jīng)成為訓(xùn)練深度網(wǎng)絡(luò)的主要選擇。由于計算性能高, 內(nèi)存大, 以及編程工具的選擇, GPU很有吸引力, 幾乎成為訓(xùn)練的必要條件。
此外, FPGA是部署訓(xùn)練網(wǎng)絡(luò)的良好目標(biāo)。FPGA提供了更低的延遲, 更好的功率效率,特別是在嵌入式設(shè)備上部署這些網(wǎng)絡(luò), 用于與I/O緊密操作的控制系統(tǒng)。
軟件
快速采用和成功的一個原因是成熟軟件框架的可用性。 一些常見的框架有 TensorFlow, Caffe, Keras 和 Computational Network Toolkit (CNTK)[4,5,6,7]。 這些框架支持不同的操作系統(tǒng), 如 Windows 和 Linux, 以及 Python 和 C語言。 大多數(shù)這些框架都有支持或?qū)嵗齺韺嵤┳钚碌纳疃染W(wǎng)絡(luò),也支持GPU的使用。
深度學(xué)習(xí): IoT 控制設(shè)計的新方向
深度學(xué)習(xí)是人工智能領(lǐng)域中一個令人興奮的新方向, 也是解決工業(yè)控制設(shè)計應(yīng)用中一個有前途的技術(shù)。
快速開始掌握深度學(xué)習(xí)的方法是下載前面提到的開源框架, 并且用教程示例進行實驗。 從一個類似于應(yīng)用程序的示例開始, 然后使用轉(zhuǎn)移學(xué)習(xí)來快速操作。
References:
Veen, Fjodor Van. "The Neural Network Zoo." The Asimov Institute. October 28, 2016. Accessed September 20, 2017.
"Long short-term memory." Wikipedia. August 27, 2017. Accessed September 20, 2017.
Zhang, Fangyi, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. "Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control." [1511.03791] Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control. November 13, 2015. Accessed September 20, 2017.
"TensorFlow." TensorFlow. Accessed September 20, 2017.
"Caffe." Caffe | Deep Learning Framework. Accessed September 20, 2017.
"Keras: The Python Deep Learning library." Keras Documentation. Accessed September 20, 2017.
"Video: Unlock deeper learning with the new Microsoft Cognitive Toolkit." Microsoft Cognitive Toolkit. Accessed September 20, 2017.
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
10月31日立即下載>> 【限時免費下載】TE暖通空調(diào)系統(tǒng)高效可靠的組件解決方案
-
即日-11.13立即報名>>> 【在線會議】多物理場仿真助跑新能源汽車
-
11月28日立即報名>>> 2024工程師系列—工業(yè)電子技術(shù)在線會議
-
12月19日立即報名>> 【線下會議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會
-
即日-12.26火熱報名中>> OFweek2024中國智造CIO在線峰會
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍皮書》
推薦專題
- 高級軟件工程師 廣東省/深圳市
- 自動化高級工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市