ZLG深度解析—人臉識別核心技術
五、人臉反欺詐
從技術角度來說,人臉是唯一不需要用戶配合就可以采集的生物特征信息。人臉不同于指紋、掌紋、虹膜等,用戶不愿意被采集信息就無法獲得高質量的特征信息。人臉信息簡單易得,而且質量還好,所以這引發(fā)了有關個人數(shù)據(jù)安全性的思考。而且在沒有設計人臉反欺詐算法的人臉識別系統(tǒng)使用手機、ipad或是打印的圖片等都能對輕松欺騙系統(tǒng)。
所以我們采用多傳感器融合技術的方案,使用紅外對管與圖像傳感器數(shù)據(jù)進行深度學習來判斷是否存在欺詐。紅外對管進行用戶距離的判斷,距離過近則懷疑欺詐行為。圖像傳感器用深度學習算法進行二分類,把正常用戶行為與欺詐用戶行為分為兩類,對欺詐用戶進行排除。
二分類算法能夠有效抵抗一定距離的手機、ipad或是打印圖片的欺詐攻擊。對人臉欺詐數(shù)據(jù)集與普通人臉數(shù)據(jù)集預測如圖所示:
本二分類算法在100萬張圖片中準確分類的概率為98.89%,所以并不會對整體系統(tǒng)的準確率進行影響,保障系統(tǒng)的可靠性。
六、算法優(yōu)化
在使用神經(jīng)網(wǎng)絡算法解決問題的時候,算法效率問題是必要的考量的。特別是在資源與算力不足的嵌入式端,更是頭等大問題。除了依托TensorFlow、Keras等開源框架,根據(jù)其前向傳播的原理寫成C++程序,還有必要的編譯優(yōu)化外,模型權重參數(shù)的清洗和算法計算的向量化都是比較有效的手段。
1、模型權重參數(shù)清洗
權重參數(shù)清洗對神經(jīng)網(wǎng)絡算法的效率影響相當大,沒有進行清洗的權重參數(shù)訪問與操作非常低效,與清洗后的權重參數(shù)相比往往能效率相差6-8倍。這差距在算力不足的嵌入式端非常明顯,往往決定一個算法是否能落地。具體的方法就是先讀取原模型進行重組,讓參數(shù)變得緊湊且能在計算時連續(xù)訪問計算,最后獲得重組后的模型與對應的重組模型的計算方法。這個步驟需要一定的優(yōu)化實踐經(jīng)驗以達到滿意的效果,對模型讀取效率與運算效率都會有顯著的提高。
2、算法計算向量化
對于算法的向量化的做法就是讓算法的計算能夠使用向量乘加等運算,而特別是在使用神經(jīng)網(wǎng)絡算法情況下,大量的計算沒有前后相關性且執(zhí)行相類似的步驟,所以向量化計算會對算法有明顯的提升,一般能把算法效率提升三倍左右。
使用NEON指令集的SIMD指令取代ARM通用的SISD指令,是一個常用的算法向量化方法。在基于ARMV7-A和ARMV7-R的體系架構上基本采用了NEON技術,ARMV8也支持并與ARMV7兼容。
以IMX6ULL芯片為例,可以通過查閱官方的參考手冊查看其NEON相關信息:
下面舉例說明普通的編程寫法與NEON instrinsics編程、NEON assembly編程區(qū)別。以下為普通的編程寫法:
以下為轉化為NEON instrinsics的編程:
以為轉為NEON assembly的編程:
一般NEON instrinsics已經(jīng)能做到三倍的提速效果,而NEON assembly效果會更好一些。但是程序向量化需要特殊訪存規(guī)則,如果不符合則會對導致提速效果大打折扣。
訪存特征詳細分類如表所示:
其中,無冗余飽和順序模式是理想的訪問模式,能夠發(fā)揮算法計算向量化的效果。但是我們神經(jīng)網(wǎng)絡算法的最基本的卷積、全連接等計算卻是冗余飽和非順序模式的計算,這要如何解決呢?
查閱相關論文、期刊對這程序向量化非規(guī)則訪存的研究,可以發(fā)現(xiàn)程序向量化有以下步驟:
如上圖所示,需要對卷積、全連接等冗余飽和非順序模式計算通過向量混洗為無冗余飽和順序的模式,以達到優(yōu)化的效果。
七、人臉識別效果展示
基于PC的人臉識別展示demo如下視頻所示:
ZLG的人臉識別算法已成功移植到了cortex-a7的EPC-6Y2C-L平臺,且還能根據(jù)實際應用做進一步的優(yōu)化。人臉檢測效率為166ms左右,人臉定位效率為125ms左右,人臉比對的效率為493ms左右,合計人臉識別總耗時788.3ms左右。下面是在EPC-6Y2C-L的實測效果:
最后附上EPC-6Y2C-L產(chǎn)品圖片:
八、關于算法庫獲取
關于算法庫的獲取可以咨詢ZLG的銷售人員。
請輸入評論內容...
請輸入評論/評論長度6~500個字
最新活動更多
-
10月31日立即下載>> 【限時免費下載】TE暖通空調系統(tǒng)高效可靠的組件解決方案
-
即日-11.13立即報名>>> 【在線會議】多物理場仿真助跑新能源汽車
-
11月28日立即報名>>> 2024工程師系列—工業(yè)電子技術在線會議
-
12月19日立即報名>> 【線下會議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會
-
即日-12.26火熱報名中>> OFweek2024中國智造CIO在線峰會
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍皮書》
推薦專題
- 高級軟件工程師 廣東省/深圳市
- 自動化高級工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結構工程師 廣東省/深圳市