訂閱
糾錯
加入自媒體

使用Python+OpenCV+Dlib實現(xiàn)人臉檢測與人臉特征關(guān)鍵點識別

到目前為止,我們在檢測人臉方面做得很好,但是我們?nèi)匀恍枰恍┕ぷ鱽硖崛∷刑卣鳎ǖ貥耍。接下來讓我們開始吧。步驟3:識別人臉特征你喜歡魔術(shù)嗎?到目前為止,DLib的工作方式相當神奇,只需幾行代碼我們就可以實現(xiàn)很多,而現(xiàn)在我們遇到了一個全新的問題,它還會繼續(xù)這么簡單嗎?回答是肯定的!原來DLib提供了一個名為shape_predictor()的函數(shù),它將為我們提供所有的魔法,但是需要一個預(yù)先訓(xùn)練的模型才能工作。有幾種模型可以與shape_predictor一起工作,我正在使用的模型可以在這里下載,也可以嘗試其他模型。讓我們看看新代碼現(xiàn)在是什么樣子import cv2import dlib# Load the detectordetector = dlib.get_frontal_face_detector()# Load the predictorpredictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")# read the imageimg = cv2.imread("face.jpg")# Convert image into grayscalegray = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2GRAY)# Use detector to find landmarksfaces = detector(gray)for face in faces:    x1 = face.left() # left point    y1 = face.top() # top point    x2 = face.right() # right point    y2 = face.bottom() # bottom point    # Look for the landmarks    landmarks = predictor(image=gray, box=face)    x = landmarks.part(27).x    y = landmarks.part(27).y    # Draw a circle    cv2.circle(img=img, center=(x, y), radius=5, color=(0, 255, 0), thickness=-1)# show the imagecv2.imshow(winname="Face", mat=img)# Wait for a key press to exitcv2.waitKey(delay=0)# Close all windowscv2.destroyAllWindows()像以前一樣,我們總是在同一個代碼上構(gòu)建代碼,現(xiàn)在使用我們的預(yù)測函數(shù)為每個人臉找到特征。但現(xiàn)在我還在做一些奇怪的事情,比如如下代碼的數(shù)值27是用來干嘛的?landmarks = predictor(image=gray, box=face)x = landmarks.part(27).xy = landmarks.part(27).y我們的預(yù)測函數(shù)會返回一個包含68個點的對象,根據(jù)我們之前看到的圖片,如果你注意到的話,會發(fā)現(xiàn)點27正好在眼睛之間,所以如果所有的計算正確,你應(yīng)該看到一個綠點在眼睛之間,如下圖所示:

我們已經(jīng)很接近了,現(xiàn)在讓我們渲染所有的點,而不是只渲染一個:import cv2import numpy as npimport dlib# Load the detectordetector = dlib.get_frontal_face_detector()# Load the predictorpredictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")# read the imageimg = cv2.imread("face.jpg")# Convert image into grayscalegray = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2GRAY)# Use detector to find landmarksfaces = detector(gray)for face in faces:    x1 = face.left() # left point    y1 = face.top() # top point    x2 = face.right() # right point    y2 = face.bottom() # bottom point    # Create landmark object    landmarks = predictor(image=gray, box=face)    # Loop through all the points    for n in range(0, 68):        x = landmarks.part(n).x        y = landmarks.part(n).y        # Draw a circle        cv2.circle(img=img, center=(x, y), radius=3, color=(0, 255, 0), thickness=-1)# show the imagecv2.imshow(winname="Face", mat=img)# Delay between every framcv2.waitKey(delay=0)# Close all windowscv2.destroyAllWindows()

但是如果你對所有的點都不感興趣呢?實際上,你可以調(diào)整你的范圍間隔來獲得上面術(shù)語表中指定的任何特征,就像我在這里做的那樣:

<上一頁  1  2  3  下一頁>  
聲明: 本文由入駐維科號的作者撰寫,觀點僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯
x
*文字標題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號