訂閱
糾錯(cuò)
加入自媒體

一文看懂AI芯片最新格局

AI 芯片設(shè)計(jì)是人工智能產(chǎn)業(yè)鏈的重要一環(huán)。 自 2017 年 5 月以來,各 AI 芯片廠商的新品競(jìng)相發(fā)布,經(jīng)過一年多的發(fā)展,各環(huán)節(jié)分工逐漸明顯。 AI 芯片的應(yīng)用場(chǎng)景不再局限于云端,部署于智能手機(jī)、 安防攝像頭、及自動(dòng)駕駛汽車等終端的各項(xiàng)產(chǎn)品日趨豐富。 除了追求性能提升外, AI 芯片也逐漸專注于特殊場(chǎng)景的優(yōu)化。

自 2017 年 5 月以來發(fā)布的 AI 芯片一覽

目前, 人工智能產(chǎn)業(yè)鏈中,包括提供 AI 加速核的 IP 授權(quán)商,各種 AI 芯片設(shè)計(jì)公司,以及晶圓代工企業(yè)。

按部署的位置來分, AI 芯片可以部署在數(shù)據(jù)中心(云端),和手機(jī),安防攝像頭,汽車等終端上。

按承擔(dān)的任務(wù)來分,可以被分為用于構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練芯片,與利用神經(jīng)網(wǎng)絡(luò)模型進(jìn)行推斷的推斷芯片。 訓(xùn)練芯片注重絕對(duì)的計(jì)算能力,而推斷芯片更注重綜合指標(biāo), 單位能耗算力、時(shí)延、成本等都要考慮。

訓(xùn)練芯片受算力約束,一般只在云端部署。推斷芯片按照不同應(yīng)用場(chǎng)景,分為手機(jī)邊緣推斷芯片、安防邊緣推斷芯片、自動(dòng)駕駛邊緣推斷芯片。為方便起見,我們也稱它們?yōu)槭謾C(jī) AI 芯片、安防 AI 芯片和汽車 AI 芯片。

由于 AI芯片對(duì)單位能耗算力要求較高,一般采用 14nm/12nm/10nm等先進(jìn)工藝生產(chǎn)。臺(tái)積電目前和 Nvidia、 Xilinx 等多家芯片廠商展開合作,攻堅(jiān) 7nm AI 芯片。

AI 芯片投資地圖

AI 芯片市場(chǎng)規(guī)模: 未來五年有接近 10 倍的增長(zhǎng), 2022 年將達(dá)到 352 億美元。根據(jù)我們對(duì)相關(guān)上市 AI 芯片公司的收入統(tǒng)計(jì),及對(duì) AI 在各場(chǎng)景中滲透率的估算, 2017年 AI 芯片市場(chǎng)規(guī)模已達(dá)到 39.1 億美元,具體情況如下:

2017 年全球數(shù)據(jù)中心 AI 芯片規(guī)模合計(jì) 23.6 億美元,其中云端訓(xùn)練芯片市場(chǎng)規(guī)模 20.2億美元,云端推斷芯片 3.4 億美元。

2017 年全球手機(jī) AI 芯片市場(chǎng)規(guī)模 3.7 億美元。

2017 年全球安防攝像頭 AI 芯片市場(chǎng)規(guī)模 3.3 億美元。

2017 年全球自動(dòng)駕駛 AI 芯片的市場(chǎng)規(guī)模在 8.5 億美元。

AI 芯片市場(chǎng)規(guī)模及競(jìng)爭(zhēng)格局

Nvidia 在 2017 年時(shí)指出,到 2020 年,全球云端訓(xùn)練芯片的市場(chǎng)規(guī)模將達(dá)到 110 億美元,而推斷芯片(云端+邊緣) 的市場(chǎng)規(guī)模將達(dá)到 150 億美元。 Intel 在剛剛結(jié)束的 2018 DCI峰會(huì)上,也重申了數(shù)據(jù)業(yè)務(wù)驅(qū)動(dòng)硬件市場(chǎng)增長(zhǎng)的觀點(diǎn)。 Intel 將 2022 年與用于數(shù)據(jù)中心執(zhí)行 AI 加速的 FPGA 的 TAM 預(yù)測(cè),由 70 億美元調(diào)高至 80 億美元。

而同時(shí)我們也注意到:

1)手機(jī) SoC 價(jià)格不斷上升、 AI 向中端機(jī)型滲透都將為行業(yè)創(chuàng)造更廣闊的市場(chǎng)空間。

歷代 Apple 手機(jī)芯片成本趨勢(shì)

2)安防芯片受益于現(xiàn)有設(shè)備的智能化升級(jí),芯片需求擴(kuò)大。

自動(dòng)駕駛算力需求加速芯片升級(jí)

3)自動(dòng)駕駛方面,針對(duì)豐田公司提出的算力需求,我們看到當(dāng)下芯片算力與 L5 級(jí)自動(dòng)駕駛還有較大差距。 英飛凌公司給出了各自動(dòng)駕駛等級(jí)中的半導(dǎo)體價(jià)值預(yù)測(cè), 可以為我們的 TAM 估算提供參考。

英飛凌對(duì)各自動(dòng)駕駛等級(jí)中半導(dǎo)體價(jià)值的預(yù)測(cè)

結(jié)合以上觀點(diǎn),及我們對(duì) AI 在各應(yīng)用場(chǎng)景下滲透率的分析,我們預(yù)測(cè):

云端訓(xùn)練芯片市場(chǎng)規(guī)模在 2022 年將達(dá)到 172 億美元, CAGR~54%。

云端推斷芯片市場(chǎng)規(guī)模在 2022 年將達(dá)到 72 億美元, CAGR~84%。

用于智能手機(jī)的邊緣推斷芯片市場(chǎng)規(guī)模 2022 年將達(dá)到 38 億美元, CAGR~59%。

用于安防攝像頭的邊緣推斷芯片市場(chǎng)規(guī)模 2022 年將達(dá)到 18 億美元, CAGR~41%。

用于自動(dòng)駕駛汽車的邊緣推斷芯片市場(chǎng)規(guī)模 2022 年將達(dá)到 52 億美元, CAGR~44%。

云端訓(xùn)練芯片: TPU 很難撼動(dòng) Nvidia GPU 的壟斷地位

訓(xùn)練是指通過大量的數(shù)據(jù)樣本,代入神經(jīng)網(wǎng)絡(luò)模型運(yùn)算并反復(fù)迭代,來獲得各神經(jīng)元“正確”權(quán)重參數(shù)的過程。 CPU 由于計(jì)算單元少,并行計(jì)算能力較弱,不適合直接執(zhí)行訓(xùn)練任務(wù),因此訓(xùn)練一般采用“CPU+加速芯片”的異構(gòu)計(jì)算模式。目前 Nvidia 的 GPU+CUDA計(jì)算平臺(tái)是最成熟的 AI 訓(xùn)練方案,除此還有:

AI 芯片工作流程

第三方異構(gòu)計(jì)算平臺(tái) OpenCL + AMD GPU 或 OpenCL+I(xiàn)ntel/Xilinx 的 FPGA。

云計(jì)算服務(wù)商自研加速芯片(如 Google 的 TPU) 這兩種方案。各芯片廠商基于不同方案,都推出了針對(duì)于云端訓(xùn)練的 AI 芯片。

云端訓(xùn)練芯片對(duì)比

Google

在 GPU 之外,云端訓(xùn)練的新入競(jìng)爭(zhēng)者是 TPU。 Google 在去年正式發(fā)布了其 TPU 芯片,并在二代產(chǎn)品中開始提供對(duì)訓(xùn)練的支持,但比較下來, GPU 仍然擁有最強(qiáng)大的帶寬(900GB/s,保證數(shù)據(jù)吞吐量)和極高的深度學(xué)習(xí)計(jì)算能力(120 TFLOPS vs. TPUv2 45 TFLOPS),在功耗上也并沒有太大劣勢(shì)(TPU 進(jìn)行訓(xùn)練時(shí),引入浮點(diǎn)數(shù)計(jì)算,需要逾 200W 的功耗,遠(yuǎn)不及推斷操作節(jié)能)。目前 TPU 只提供按時(shí)長(zhǎng)付費(fèi)使用的方式,并不對(duì)外直接銷售,市占率暫時(shí)也難以和 Nvidia GPU 匹敵。

Intel

雖然深度學(xué)習(xí)任務(wù)主要由 GPU 承擔(dān),但 CPU 目前仍是云計(jì)算芯片的主體。 Intel 于 2015年底年收購全球第二大 FPGA 廠商 Altera 以后,也積極布局 CPU+FPGA 異構(gòu)計(jì)算助力 AI,并持續(xù)優(yōu)化 Xeon CPU 結(jié)構(gòu)。 2017 年 Intel 發(fā)布了用于 Xeon 服務(wù)器的,新一代標(biāo)準(zhǔn)化的加速卡,使用戶可以 AI 領(lǐng)域進(jìn)行定制計(jì)算加速。得益于龐大的云計(jì)算市場(chǎng)支撐, Intel 數(shù)據(jù)中心組業(yè)務(wù)收入規(guī)模一直位于全球首位, 2016-17 年單季保持同比中高個(gè)位數(shù)增長(zhǎng)。 2017年 4 季度起,收入同比增速開始爬坡至 20%左右,但相比 Nvidia 的強(qiáng)勁增長(zhǎng)態(tài)勢(shì)仍有差距。

AMD

AMD 雖未單獨(dú)拆分?jǐn)?shù)據(jù)中心收入,但從其計(jì)算和圖像業(yè)務(wù)的收入增長(zhǎng)情況來看, GPU 銷量向好。目前 AMD GPU 也開始切入深度學(xué)習(xí)訓(xùn)練任務(wù),但市場(chǎng)規(guī)模落后于 Nvidia。

1  2  3  下一頁>  
聲明: 本文系OFweek根據(jù)授權(quán)轉(zhuǎn)載自其它媒體或授權(quán)刊載,目的在于信息傳遞,并不代表本站贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),如有新聞稿件和圖片作品的內(nèi)容、版權(quán)以及其它問題的,請(qǐng)聯(lián)系我們。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評(píng)論

暫無評(píng)論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號(hào)
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯(cuò)
x
*文字標(biāo)題:
*糾錯(cuò)內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號(hào)