自動(dòng)機(jī)器學(xué)習(xí)簡(jiǎn)述
三、元學(xué)習(xí) Meta Learning
元學(xué)習(xí)也就是"學(xué)習(xí)如何學(xué)習(xí)",通過(guò)對(duì)現(xiàn)有的學(xué)習(xí)任務(wù)之間的性能差異進(jìn)行系統(tǒng)的觀測(cè),然后學(xué)習(xí)已有的經(jīng)驗(yàn)和元數(shù)據(jù),用于更好的執(zhí)行新的學(xué)習(xí)任務(wù)。這樣做可以極大的該靜機(jī)器學(xué)習(xí)流水線或者神經(jīng)網(wǎng)絡(luò)架構(gòu)的設(shè)計(jì),也可以用數(shù)據(jù)驅(qū)動(dòng)的方式取代手工作坊似的算法工程工作。
從某種意義上來(lái)說(shuō),元學(xué)習(xí)覆蓋了超參數(shù)優(yōu)化,因?yàn)樵獢?shù)據(jù)的學(xué)習(xí)包含了:超參數(shù),流水線的構(gòu)成,神經(jīng)網(wǎng)絡(luò)架構(gòu),模型構(gòu)成,元特征等等。
機(jī)器學(xué)習(xí)的算法我們又稱為‘學(xué)習(xí)器’,學(xué)習(xí)器就是假定一個(gè)模型,該模型擁有很多未知參數(shù),利用訓(xùn)練數(shù)據(jù)和優(yōu)化算法來(lái)找到最適合這些訓(xùn)練數(shù)據(jù)的參數(shù),生成一個(gè)新的算法,或者參數(shù)已知的模型,并利用該模型/算法來(lái)預(yù)測(cè)新的未知數(shù)據(jù)。如果說(shuō)世界上只有一個(gè)模型,那么問(wèn)題就簡(jiǎn)單了,問(wèn)題是模型有很多,不同的模型擁有不同的超參數(shù),我們往往還會(huì)把模型和算法組裝在一起構(gòu)成復(fù)合模型和機(jī)器學(xué)習(xí)的流水線,這個(gè)時(shí)候,我就需要知道解決不同的問(wèn)題要構(gòu)建那些不同的模型。元學(xué)習(xí)就在這個(gè)時(shí)候,我們可以把超參數(shù),流水線,神經(jīng)網(wǎng)絡(luò)架構(gòu)這些都看成是一個(gè)新的模型的未知參數(shù),把不同學(xué)習(xí)任務(wù)的性能指標(biāo)看成是輸入數(shù)據(jù),這樣我們就可以利用優(yōu)化算法來(lái)找到性能最好的那組參數(shù)。這個(gè)模式可以一直嵌套,也就是說(shuō),你可以有‘元元元學(xué)習(xí)‘,當(dāng)然我希望你不要走得太遠(yuǎn),找不到回來(lái)的路。
元學(xué)習(xí)的方法包括:
通過(guò)模型評(píng)估來(lái)學(xué)習(xí)
通過(guò)任務(wù)的屬性,元特征來(lái)學(xué)習(xí)
以下列出了一些常見(jiàn)的元特征
從現(xiàn)有的模型中學(xué)習(xí),包括:
遷移學(xué)習(xí)
利用RNN在學(xué)習(xí)過(guò)程中修改自己的權(quán)重
元學(xué)習(xí)的一個(gè)很大的挑戰(zhàn)就是如果通過(guò)很少的訓(xùn)練數(shù)據(jù)來(lái)學(xué)習(xí)一個(gè)復(fù)雜的模型,這就是one-shot或者few-shot的問(wèn)題。
像人類的學(xué)習(xí)一樣,每次學(xué)習(xí)無(wú)論成功失敗,我們都收獲一定的經(jīng)驗(yàn),人類很少?gòu)念^學(xué)習(xí)。在構(gòu)建自動(dòng)學(xué)習(xí)的時(shí)候,我們也應(yīng)該充分利用已有的每一次的學(xué)習(xí)經(jīng)驗(yàn),逐步的改進(jìn),使得新的學(xué)習(xí)更加有效。
四、神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索
Neural Architecture Search
提起AutoML,其實(shí)大多數(shù)人都是因?yàn)镚oogle的AutoML系統(tǒng)才知道這個(gè)故事的。隨著深度學(xué)習(xí)的流行,神經(jīng)網(wǎng)絡(luò)的架構(gòu)變得越來(lái)越復(fù)雜,越來(lái)越多的手工工程也隨之而來(lái)。神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索就是為了解決這個(gè)問(wèn)題。
NAS主要包含三個(gè)部分:
搜索空間 search space
搜索策略 search strategy
性能估計(jì)策略 performance estimation strategy
五、自動(dòng)化特征工程
自動(dòng)化特征工程可以幫助數(shù)據(jù)科學(xué)家基于數(shù)據(jù)集自動(dòng)創(chuàng)建能夠最好的用于訓(xùn)練的特征。
Featuretools是一個(gè)開(kāi)源庫(kù),用來(lái)實(shí)現(xiàn)自動(dòng)化特征工程。它是一個(gè)很好的工具,旨在加快特征生成的過(guò)程,從而讓大家有更多的時(shí)間專注于構(gòu)建機(jī)器學(xué)習(xí)模型的其他方面。換句話說(shuō),它使你的數(shù)據(jù)處于“等待機(jī)器學(xué)習(xí)”的狀態(tài)。
Featuretools程序包中的三個(gè)主要組件:
實(shí)體(Entities)
深度特征綜合(Deep Feature Synthesis ,DFS)
特征基元(Feature primitives)
一個(gè)Entity可以視作是一個(gè)Pandas的數(shù)據(jù)框的表示,多個(gè)實(shí)體的集合稱為Entityset。
深度特征綜合(DFS)與深度學(xué)習(xí)無(wú)關(guān),不用擔(dān)心。實(shí)際上,DFS是一種特征工程方法,是Featuretools的主干。它支持從單個(gè)或者多個(gè)數(shù)據(jù)框中構(gòu)造新特征。
DFS通過(guò)將特征基元應(yīng)用于Entityset的實(shí)體關(guān)系來(lái)構(gòu)造新特征。這些特征基元是手動(dòng)生成特征時(shí)常用的方法。例如,基元“mean”將在聚合級(jí)別上找到變量的平均值。
六、其它自動(dòng)機(jī)器學(xué)習(xí)工具集
以下列出一些開(kāi)源的自動(dòng)機(jī)器學(xué)習(xí)工具空大家參考、選擇
Auto-Sklearn
AutoKeras
TPOT
H2O AutoML
Python auto_ml
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
即日-11.13立即報(bào)名>>> 【在線會(huì)議】多物理場(chǎng)仿真助跑新能源汽車
-
11月28日立即報(bào)名>>> 2024工程師系列—工業(yè)電子技術(shù)在線會(huì)議
-
12月19日立即報(bào)名>> 【線下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
即日-12.26火熱報(bào)名中>> OFweek2024中國(guó)智造CIO在線峰會(huì)
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書(shū)》
-
精彩回顧立即查看>> 【限時(shí)免費(fèi)下載】TE暖通空調(diào)系統(tǒng)高效可靠的組件解決方案
推薦專題
- 1 【一周車話】沒(méi)有方向盤和踏板的車,你敢坐嗎?
- 2 特斯拉發(fā)布無(wú)人駕駛車,還未迎來(lái)“Chatgpt時(shí)刻”
- 3 特斯拉股價(jià)大跌15%:Robotaxi離落地還差一個(gè)蘿卜快跑
- 4 馬斯克給的“驚喜”夠嗎?
- 5 打完“價(jià)格戰(zhàn)”,大模型還要比什么?
- 6 馬斯克致敬“國(guó)產(chǎn)蘿卜”?
- 7 神經(jīng)網(wǎng)絡(luò),誰(shuí)是盈利最強(qiáng)企業(yè)?
- 8 比蘋果偉大100倍!真正改寫人類歷史的智能產(chǎn)品降臨
- 9 諾獎(jiǎng)進(jìn)入“AI時(shí)代”,人類何去何從?
- 10 Open AI融資后成萬(wàn)億獨(dú)角獸,AI人才之爭(zhēng)開(kāi)啟
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市