Python數(shù)據(jù)科學(xué):神經(jīng)網(wǎng)絡(luò)
(Artificial Neural Network,ANN)人工神經(jīng)網(wǎng)絡(luò)模型,以數(shù)學(xué)和物理的方法對(duì)人腦神經(jīng)網(wǎng)絡(luò)進(jìn)行簡(jiǎn)化、抽象和模擬。
本次只是一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)入門(mén),涉及神經(jīng)元模型和BP神經(jīng)網(wǎng)絡(luò)。
這里簡(jiǎn)單了解一下機(jī)器學(xué)習(xí)的三要素,分別是模型、策略與算法。
模型包括非隨機(jī)效應(yīng)部分(被解釋變量和解釋變量之間的關(guān)系,多為函數(shù)關(guān)系)和隨機(jī)效應(yīng)部分(擾動(dòng)項(xiàng))。
策略是指如何設(shè)定最優(yōu)化的目標(biāo)函數(shù),常見(jiàn)的目標(biāo)函數(shù)有線(xiàn)性回歸的殘差平方和、邏輯回歸的似然函數(shù)、SVM中的合頁(yè)函數(shù)等。
算法是對(duì)目標(biāo)函數(shù)求參的方法,比如通過(guò)求導(dǎo)的方法計(jì)算,或者使用數(shù)值計(jì)算領(lǐng)域的算法求解。
其中神經(jīng)網(wǎng)絡(luò)就是采用數(shù)值算法求解參數(shù),這就意味著每次計(jì)算得到的模型參數(shù)都會(huì)是不同的。
/ 01 / 神經(jīng)網(wǎng)絡(luò)
01 神經(jīng)元模型
神經(jīng)網(wǎng)絡(luò)中最基本的成分是神經(jīng)元模型。
每個(gè)神經(jīng)元都是一個(gè)多輸入單輸出的信息處理單元,輸入信號(hào)通過(guò)帶權(quán)重的連接傳遞,和閾值對(duì)比后得到總輸入值,再通過(guò)激活函數(shù)的處理產(chǎn)生單個(gè)輸出。
神經(jīng)元的輸出,是對(duì)激活函數(shù)套用輸入加權(quán)和的結(jié)果。
神經(jīng)元的激活函數(shù)使得神經(jīng)元具有不同的信息處理特性,反映了神經(jīng)元輸出與其激活狀態(tài)之間的關(guān)系。
本次涉及到的激活函數(shù)有閾值函數(shù)(階躍函數(shù))、sigmoid函數(shù)(S型函數(shù))。
02 單層感知器
感知器是一種具有單層計(jì)算單元的神經(jīng)網(wǎng)絡(luò),只能用來(lái)解決線(xiàn)性可分的二分類(lèi)問(wèn)題。
無(wú)法運(yùn)用到多層感知器中,無(wú)法確定隱藏層的期望輸出。
它的結(jié)構(gòu)類(lèi)似之前的神經(jīng)元模型。
激活函數(shù)采用單極性(或雙極性)閾值函數(shù)。
03 BP神經(jīng)網(wǎng)絡(luò)
采用誤差反向傳播算法(有監(jiān)督學(xué)習(xí)算法)訓(xùn)練的多層神經(jīng)網(wǎng)絡(luò)稱(chēng)為BP神經(jīng)網(wǎng)絡(luò)。
屬于多層前饋型神經(jīng)網(wǎng)絡(luò),模型的學(xué)習(xí)過(guò)程由信號(hào)的正向傳播和誤差反向傳播兩個(gè)過(guò)程組成。
進(jìn)行正向傳播時(shí)信號(hào)從輸入層計(jì)算各層加權(quán)和,經(jīng)由各隱層最終傳遞到輸出層,得到輸出結(jié)果,比較輸出結(jié)果與期望結(jié)果(監(jiān)督信號(hào)),得到輸出誤差。
誤差反向傳播是依照梯度下降算法將誤差沿著隱藏層到輸入層逐層反向傳播,將誤差分?jǐn)偨o各層的所有單元,從而得到各個(gè)單元的誤差信號(hào)(學(xué)習(xí)信號(hào)),據(jù)此修改各單元權(quán)值。
這兩個(gè)信號(hào)傳播過(guò)程不斷循環(huán)以更新權(quán)值,最終根據(jù)判定條件判斷是否結(jié)束循環(huán)。
其網(wǎng)絡(luò)結(jié)構(gòu)普遍為單隱層網(wǎng)絡(luò),包括輸入層、隱層、輸出層。
激活函數(shù)多采用sigmoid函數(shù)或線(xiàn)性函數(shù),這里隱層和輸出層均采用sigmoid函數(shù)。
/ 02/ Python實(shí)現(xiàn)
神經(jīng)網(wǎng)絡(luò)在有明確的訓(xùn)練樣本后,網(wǎng)絡(luò)的輸入層結(jié)點(diǎn)數(shù)(解釋變量個(gè)數(shù))和輸出層結(jié)點(diǎn)數(shù)(被解釋變量的個(gè)數(shù))便已確定。
需要考慮的則是隱含層的個(gè)數(shù)和每個(gè)隱含層的結(jié)點(diǎn)個(gè)數(shù)。
下面利用書(shū)中的數(shù)據(jù)進(jìn)行實(shí)戰(zhàn)一波,一份移動(dòng)離網(wǎng)數(shù)據(jù)。
移動(dòng)通訊用戶(hù)消費(fèi)特征數(shù)據(jù),目標(biāo)字段為是否流失,具有兩個(gè)分類(lèi)水平(是與否)。
自變量包含了用戶(hù)的基本信息、消費(fèi)的產(chǎn)品信息以及用戶(hù)的消費(fèi)特征。
讀取數(shù)據(jù)。
import pandas as pd
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
# 設(shè)置最大顯示行數(shù)
pd.set_option('display.max_rows', 10)
# 設(shè)置最大顯示列數(shù)
pd.set_option('display.max_columns', 10)
# 設(shè)置顯示寬度為1000,這樣就不會(huì)在IDE中換行了
pd.set_option('display.width', 1000)
# 讀取數(shù)據(jù),skipinitialspace:忽略分隔符后的空白
churn = pd.read_csv('telecom_churn.csv', skipinitialspace=True)
print(churn)
輸出數(shù)據(jù)概況,包含3000多個(gè)用戶(hù)數(shù)據(jù)。
使用scikit-learn中的函數(shù)將數(shù)據(jù)集劃分為訓(xùn)練集和測(cè)試集。
# 選取自變量數(shù)據(jù)
data = churn.iloc[:, 2:]
# 選取因變量數(shù)據(jù)
target = churn['churn']
# 使用scikit-learn將數(shù)據(jù)集劃分為訓(xùn)練集和測(cè)試集
train_data, test_data, train_target, test_target = train_test_split(data, target, test_size=0.4, train_size=0.6, random_state=1234)
神經(jīng)網(wǎng)絡(luò)需要對(duì)數(shù)據(jù)進(jìn)行極值標(biāo)準(zhǔn)化。
需要對(duì)連續(xù)變量進(jìn)行極值標(biāo)準(zhǔn)化,分類(lèi)變量需要轉(zhuǎn)變?yōu)樘摂M變量。
其中多分類(lèi)名義變量必須轉(zhuǎn)變?yōu)樘摂M變量,而等級(jí)變量和二分類(lèi)變量則可以選擇不轉(zhuǎn)變,當(dāng)做連續(xù)變量處理即可。
本次數(shù)據(jù)中,教育等級(jí)和套餐類(lèi)型是等級(jí)變量,性別等變量為二分類(lèi)變量,這些都可以作為連續(xù)變量進(jìn)行處理。
這也就意味著本次的數(shù)據(jù)集中不存在多分類(lèi)名義變量,都可作為連續(xù)變量進(jìn)行處理。
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
即日-11.13立即報(bào)名>>> 【在線(xiàn)會(huì)議】多物理場(chǎng)仿真助跑新能源汽車(chē)
-
11月28日立即報(bào)名>>> 2024工程師系列—工業(yè)電子技術(shù)在線(xiàn)會(huì)議
-
12月19日立即報(bào)名>> 【線(xiàn)下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
即日-12.26火熱報(bào)名中>> OFweek2024中國(guó)智造CIO在線(xiàn)峰會(huì)
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書(shū)》
-
精彩回顧立即查看>> 【限時(shí)免費(fèi)下載】TE暖通空調(diào)系統(tǒng)高效可靠的組件解決方案
推薦專(zhuān)題
- 1 【一周車(chē)話(huà)】沒(méi)有方向盤(pán)和踏板的車(chē),你敢坐嗎?
- 2 特斯拉發(fā)布無(wú)人駕駛車(chē),還未迎來(lái)“Chatgpt時(shí)刻”
- 3 特斯拉股價(jià)大跌15%:Robotaxi離落地還差一個(gè)蘿卜快跑
- 4 馬斯克給的“驚喜”夠嗎?
- 5 打完“價(jià)格戰(zhàn)”,大模型還要比什么?
- 6 馬斯克致敬“國(guó)產(chǎn)蘿卜”?
- 7 神經(jīng)網(wǎng)絡(luò),誰(shuí)是盈利最強(qiáng)企業(yè)?
- 8 比蘋(píng)果偉大100倍!真正改寫(xiě)人類(lèi)歷史的智能產(chǎn)品降臨
- 9 諾獎(jiǎng)進(jìn)入“AI時(shí)代”,人類(lèi)何去何從?
- 10 Open AI融資后成萬(wàn)億獨(dú)角獸,AI人才之爭(zhēng)開(kāi)啟
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷(xiāo)售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷(xiāo)售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專(zhuān)家 廣東省/江門(mén)市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市